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ABSTRACT

Canonical correlation analysis is a powerful statistical method

subsuming other parametric significance tests as special cases,

and which can often best honor the complex reality to which most

researchers wish to generalize. However, it has been suggested

that the canonical correlation coefficient is positively biased.

A Monte Carlo study involving 1,000 random samples from each of

64 different population matrices was conducted to investigate

bias in both canonical correlation and redundancy coefficients,

and to provide an empirical basis for isolating an appropriate

correction formula. Results indicate that the Wherry correction,

first suggested for use with the multiple correlation

coefficient, provides a reasonable correction that is sensitive

to those factors most affecting bias. The results also indicate

that canonical results are not as positively biased as some

researchers have believed, especially if sample size is at least

10 subjects per variable or effect sizes are moderate or large.
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Multivariate statistics have seen available to researchers

for many years, although even today "there are many articles in

the research literature in whiCh multiple univariate statistics

are calculated rather than a single multivariate analysis; for

instance, one article may report 50 t-tests rather than one

MANOVA" (Moore, 1983, p. 307). McMillan and Schumacher (1984)

isolated one reason why some researchers have hesitated to use

multivariate statistical methods:

The statistical procedures for analyzing many

variables at the same time have been available for

many years, but it has only been since the computer

age that researchers have been able to utilize these

procedures. There is thus lag in training of

researchers that has militated against the use of

these more sophisticated procedures. There are in

evidence more each year in journals, however... (p.

270)

Hinkle, Wiersma and Jurs (1979) concurred, noting that "it is

becoming increasingly important for behavioral scientists to

understand multivariate procedures even if they do not use them

in their own research." And recent empirical studies of research

practice do confirm that multivariate methods are employed with

some regularity in behavioral research (Elmore & Woehlke, 1988;

Gaither & Glorfeld, 1985; Goodwin & Goodwin, 1985).

There are two reasons why multivariate methods are so

important in behavioral research, as noted by Thompson (1986c)

and by Fish (1988). First, multivariate methods control the

inflation of Type I "experimentwise" error rates. Most
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researchers are familiar with "testwise" alpha. But while

"testwise" alpha refers to the, probability of making a Type I

error for a given, hypothesis test, "experimentwise" error rate

refers to the probability of having made a Type I error anywhere

within the study. When only one hypothesis is tested for a given

group of people in a study, "experimentwise" error rate will

exactly equal the "testwise" error rate.

But when more than one hypothesis is tested in a given

study, the two error rates will not be equal. Witte (1985, p.

236) explains the two error rates using an intuitively appealing

example involving a coin toss. If the toss of heads is equated

with a Type I error, and if a coin is tossed only once, then the

probability of a head on the one toss and of at least one head

within the set of one toss will both equal 50%. But if the coin

is tossed three times, even though the "testwise" probability of

a head on each given toss in 50%, the "experimentwise"

probability that there will be at least one head in the whole set

of three flips will be inflated to more than 50%. Researchers

control "testwise" error rate by picking small values, usually

0.05, for the "teswtise" alpha. "Experimentwise" error rate can

be controlled at the "testwise" level by employing multivariate

statistics.

When researchers test several hypotheses in a given study,

but do not use multivariate statistics, the "experimentwise"

error rate will range somewhere between the "testwise" error rate

and the ceiling calculated in the manner illustrated in Table 1.

Where the experimentwise error rate will actually lie will depend

2
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upon the degree of correlation among the dependent variables in

the study. Because the enact rate in a practical sense is readily
I

estimated only when the dependent variables are perfectly

correlated (and "experimentwise" error will equal the "testwise"

error) or are perfectly uncorrelated (and "experimentwise" error

will equal the ceiling calculated in the manner illustrated in
.

Table 1), it is particularly disturbing that the researcher may

not even be able to determine the exact "experimentwise" error

rate in some studies!

INSERT TABLE 1 ABOUT HERE.

Paradoxically, although the use of several univariate tests

in a single study can lead to too many hypotheses being

spuriously rejected, as reflected in inflation of

"experimentwise" error rater it is also possible that the failure

to employ multivariate methods can lead to a failure to identify

sta"stically significant results which actually exist. Fish

(1988) provides a data set illustrating this equally disturbing

possibility. The basis for this paradox is beyond the scope of

the present treatment, but involves the second major reason why

multivariate statistics are so important.

Multivariate methods are often vital in behavioral research

because multivariate methods best honor the reality to which the

researcher is purportedly trying to generalize. Since

significance testing and error rates may not be the most

important aspect of research practice (Thompson, 1988b), this

second reason for employing multivariate statistics is actually

the more important of the two grounds for using these methods.
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Thompson (1986c, p. 9) notes that the reality about which most

researchers wish to generalize is usually one "in which the

researcner cares about multiple butcomes, in which most outcomes

have multiple causes, and in which most causes have multiple

effects." As Hopkins (1980, p. 374) has emphasized:

These multivariate methods allow understanding of

relationships among several variables not possible

with univariate analysis... Factor analysis,

canonical correlation, and discriminant analysis- -

and modifications of each procedure--allow

researchers to study complex data, particularly

situations with many interrelated variables. Such is

the case with questions based in the education of

human beings.

Similarly, McMillan and Schumacher (1984) argue that:

Social scientists have realized for. many years that

human behavior can be understood only by examining

many variables at the same time, not by dealing with

one variable in one study, another variable in a

second study, and so forth... These funivariate)

procedures hayed failed to reflect our current

emphasis on the multiplicity of factors in human

behavior... In the reality of complex social

situations the researcher needs to examine many

variables simultaneously. (pp. 269-270)

One of the most useful multivariate methods is canonical

correlation analysis, a statistical procedure first

conceptualized by Hotelling (1935). However, some researchers

4
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have suggested that canonical correlation coefficients may be

seriously positively biased estimates of true population values.

This argument has been offered based on both theoretical grounds

(e.g., Cooley & Lohnes, 1976, p. 212) and some limited previous

empirical research (cf. Sweet, 1973). But, as Cliff (1987, p.

446) notes, the degree of capitalization on sampling error in,the

calculation of Rc is still not understood.

The present study was conducted for two purposes. First, the

study was conducted to explore the degree of bias in two commonly

used measures of relationship derived through canonical

correlation analysis. Second, the study was conducted to provide

a correction factor to apply to canonical results so that more

accurate findings can be used as the basis for interpretation.

Such correction formulae are fairly commonly applied with some

research results, as in the Olkin-Pratt correction for bias in

the multiple correlation coefficient (Olkin & Pratt, 1958). In

the present study the correction factor was empirically derived.

Tatsuoka (1973) provides an example of empirical efforts to

derive correction factors for multivariate results.

The Basic Logic of Canonical Analysis

The Canonical Correlation Coefficient (Rc)

Although canonical analysis is explained in several recent

texts (Marascuilo & Levin, 1983; Thompson, 1984), some readers

may appreciate a brief discussion of the logic of canonical

analysis, prior to the presentation of the results of computer

simulations reported here. Table 2 presentz the simplest case of

a true multivariate correlation analysis, since there are two

5
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variables in both the predictor ("A" and "B") and the criterion

("X" and "X") variable sets. The table also presents the Z-score
i

equivalents of the raw scores of the 12 hypothetical subjects on

all four variables. The full canonical results associated with

the Table 2 data are presented in Table 3.

INSERT TABLES 2 AND 3 ABOUT HERE.

The function coefficients presented in Table 3 are

equivalent to multiple regression beta weights, factor analysis

pattern coefficients ( "loadings "); and discriminant analysis

function coefficients. Like all these weights, function

coefficients are the best possible weights for a given data set

for a given purpose. In tne case of canonical function

coefficients, no other weights can be derived for a given data

set to yield a larger correlation between variable sets. Thompson

and Borrello (1985) provide more detail on the equivalence of

coefficients across methods, an equivalence that is to some

degree masked by the unfortunate but traditional use of different

names to refer to statistical entities that are in fact the same

across analytic methods.

The function coefficient weights in Table 3 can be applied.

to the "observed" Z-scores reported in Table 2 to create "latent"

or "synthetic" variables scores for each of the 12 subjects on

each of the two canonical functions reported in Table 3. For

example, the function coefficients for criterion variables

and "X" on Function I were, respectively, 0.511 and 0.867. The

first subject's Z-scores for "ZX" and "ZX" were -1.525 and 1.248,

6
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respectively. Thus, the application of these weights to these

observed Z-scores ((0.511 x -1.525) + (0.867 x 1.248)) yields a

"latent" canonical composite Score ("Cl") of 0.303 for this

subject, as reported in Table 2. Scores for the canonical

composite for the predictor variable set ( "P1 ") are computed in

an analogous manner.

The Pearson product-moment correlation between latent

criterion and predictor variables "Cl" and "P1" is the canonical

correlation coefficient (Rc) associated with the first canonical

function reported in Table 3. Similarly, the bivariate

correlation between "C2" and "P2" is Rc for the second canonical

function.

Correlating observed with latent variables yields

coefficients that can be very useful in interpreting canonical

results. For example, con:elating "X" (or "ZX") with the

_ canonical composite scores associated with the variable's own

variable set ("Cl") yields what is called a structure coefficient

for the variable "X" on canonical Function I. Structure

coefficients inform the researcher regarding the nature of the

latent canonical variable (e.g.: "Cl"), and are often vital in

interpreting canonical results (Thompson, 1987).

Similarly, correlating the observed variable "X" (or "ZX")

with the latent variable for the other variable set on Function I

( "P1 ") helps inform the researcher about the meaning of the

latent variable associated with scores for the canonical

composite for the predictor variables on Function I. Correlation

coefficients between observed and latent variables computed

across variable sets are called index coefficients (Thompson,



1984, pp. 30-31), and are also very important in interpretation

(Timm & Carlson, 1976, p. 161). Table 4 indicates which canonical

coefficients are computed by correlating various combinations of

observed and latent variables.

INSERT TABLE 4 ABOUT HERE.

The Canonical RedundancY Coefficient JRdl

If the squared structure coefficients for a given variable

set on a given function are summed and the averaged, the result

is called an adequacy coefficient (Thompson, 1984, pp. 24-25).

Adequacy coefficients inform the researcher how "adequately", on

the average, a given set of latent canonical composite scores do

with respect to representing all the variance in the observed

variables in the same variable set. Stewart and Love (1968)

suggested that multiplying the adequacy coefficient for a given

variable set times the squared Rc for a given function yields

what they termed a redundancy coefficient (Rd).

Several researcher= have argued that redundancy

coefficients are extremely useful in the interpretation of

canonical results, and have even argued that redundancy

coefficients should be less positively biased than canonical

correlation coefficients (Cooley & Lohnes, 1976, p. 212).

However, it has been noted that Rc, not Rd, is optimized when

canonical function coefficients are computed (Thompson, 1984, p.

27), and that redundancy coefficients are averaged univariate

statistics rather than true multivariate statistics (Cramer &

Nicewander, 1979, p. 43; Thompson, 1987). These considerations

suggest that redundancy coefficients are not usually very useful.
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However, Rd is useful in assessing whether canonical results

consist of a "g"-function, i.e., a function with a very large Rc
i

and on which all or most variables hale very large structure

coefficients. Such results are not typically expected in a

canonical analysis, although Sexton, McLean, Boyd, Thompson and

McCormick (1988) do report canonical results in which a "g "-

function was isolated. Thc-efore, since Rd may at least

ocassionally be useful in interpeting canonical results, the

sampling bias in both Rc and Rd was investigated in the present

study.

Method

Monte Carlo or computer simulation methods have been used

for various purposes, including confirming that Yates' correction

for contingency table chi-square results is inappropriate

(Thompson, 1988a), creating a test statistic for evaluating the

statistical significance of correlations of factors acl:oss

different data sets (Thompson, 1986b), and establishing the

magnitudes of distortions introduced when ANOVA is

inappropriately used (Thompson, 1986a). One type of Monte Carlo

study begins with the creation of a large population of data with

known characteristics predetermined by the researcher. Then

samples of data are randomly selected and sample results are

calculated over and over again, usually 1,000 times for each

unique population of data. These results are averaged to

determine the degree to which sampling error causes bias in

estimates of population parameters.

In the present study it was necessary to create populations

9
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of data that were multivaziate normally distributed, since

statistical significance testing of Rc requires this assumption

(Thompson, 1984, pp. 16-18). Mdny researchers are interested in

significance tests (Thompson, 1988b), try to meet the

multivariate normality assumption in their research, and so this

assumption was met here in creating the Monte Carlo populations

in order to generalize to conte-.orary research practice.

The present study was conducted to Investigate the impacts

of sampling error on Rc and Rd across variations in variable and

sample (n) sizes, and across variations in average within-set

correlation sizes and in across-set population correlation sizes.

The computer program developed by Morris (1975) was employed to

generate populations of N= 5,000 -by -v_ with desired parameters. The

specific variations explored in the Monte Carlo study were: (a)

use of variable sets consisting of 6+6(v=12), 4+4(v=8), 4+2(v=6),

- or 10+2(v=12) variables; (b) sample sizes (nj consisting of 3,

10, 25, or 40 persons per variable; and (c) populations in which

all correlations were zero, populations in which within-set

correlations were all zero but in which between-set correlations

were heterogeneous, populations in which within-set correlations

were heterogeneous but in which between-set correlations were all

zero, and populations in which all bivariate correlation

coefficients were non-zero and homogeneous.

One population was created for each of the four types of

correlation matrices. Different subsets of variables were

employed to represent variations in variable set sizes. For

example, for a given population of data, variable set "A"

consisted of variables "1" through "6" being correlated with

10

1.3



variables "7" through "12". Variable set "B" consisted of

variables "1" through "4" being correlated with variables
4

11 9 11

through "12". Tables 5 and 6 present the population correlation

coefficients for each of the four types of correlation matrices

based on data for N=6,000 subjects, and the footnotes to the

tables further explain which subsets of variables were used to

study the effects of the four variations in variable set sizes.

INSERT TABLES 5 AND 6 ABOUT HERE.

Monte Carlo Results

This study considered four types of population matrices,

four variations in variable set sizes (12=6+6, 8=4+4, 6=4+2, and

12=10+2), and four variations in number of subjects per variable

(3, 10, 25, and 40). Thus, 4x4x4, or 64, sets of analyses were

conducted. Since 1,000 random samples were drawn for each of the

64 research situations, each involving a different canonical

analysis of sample data, a total of 64,000 canonical correlation

analyses provided the basis for the interpretations in the study.

Tables 7 through 10 present the results of these analyses.

Matrix identification codes in the tables indicate which variable

combinations were involved in a given analysis; for example,

results associated with matrix "lA" involved matrix #1 (Table 5)

and variables "1" through "6" being related with variables 71 7 11

through "12". "NCon" indicates the number of subjects per

variable involved in a given analysis. Known population

parameters involving all 6,000 subjects are reported to exactly

two decimal places. Values reported to three decimals and not in

11



parentheses report the mean deviation from true and known

population parameters for a given research situation across 1,000

random samples. Values in parentheses are the standard deviations

about mean deviations across 1,000 samples, and are akin to

standard errors. For example, as reported in Table 7, for matrix

#1, variable combination "A", the known population squared Rc was

0.00. The mean deviation from this true value across 1,000 random

samples of size n=36 ("NCon" x number of variables = 3 x (6 + 6))

was an overestimate, -0.447; the standard deviation for this

estimate across 1,000 samples in this research situation was

0.091.

INSERT TABLES 7 THROUGH 10 ABOUT HERE.

Tables 7 through 10 also present results associated with

lambda, a multivariate omnibus effect size akin to one minus a

_ squared r. That is, lambda ranges between zero and one and

smaller values indicate larger effect sizes associated with the

full set of Rc's in a study. Finally, the tables also present

results associated with the omnibus or pooled Rd coefficients for

both the predictor and the criterion variable sets. For a given

analysis and a given variable set, the pooled Rd is computed

simply by adding all the Rd's for that variable set.

Isolating a Correction for Bias in Rc

The deviations in estimates of known population values of

squared Rc presented in Tables 7 through 10, and the standard

deviations of these estimates (akin to standard errors), were

produced across 64 different research situations. These 64

12
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different research situations involved 11 primary variations: (a)

the number of variables in the predictor variable set (6, 4, 4,

or 1) ("V1"); (b) the numberlof variables in the criterion

variable set (6, 4, 2, or 2) ("V2"); (c) the total number of

variables (12, 8, 6, or 12) ("VTot"); (d) the number of subjects

sampled per variable (3, 10, 25, or 40) ("NCon"); (e) the total

number of subjects, ranging from 18 to 480 ("NTot"); (f) the

average squared bivariate correlation among variables across

variable sets, i.e., the interdomain correlation coefficients

("r2terAV"); (g) the standard deviation of the interdomain

bivariate correlation coefficients ("r2terSD"); (h) the average

squared bivariate correlation among variables within the

predictor variable sets, i.e., the intradomain correlation

coefficients for the predictor variables ("r2PterAV"); (i) the

standard deviation of the intradomain bivariate correlation

- coefficients for the predictor variables ("r2PterSD"); (j) the

average squared bivariate correlation among variables within the

criterion variable sets, i.e., the intradomain correlation

coefficients for the criterion variables ("r2CterAV"); and (k)

the standard deviation of the intradomain bivariate correlation

coefficients for the criterion variables ("r2CterSD").

These 11 variations were correlated with the mean deviations

in population estimates (Tables 7 through 10) derived in 1,000

samples randomly drawn in each of 64 research situations. To

detect possible curvilinear relationships between these 11

variations and the mean deviations from known population

parameters, squared values in each of the 11 variables were also

correlated with the mean deviations from population parameters.

13
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Thus, 22 (11 + 11) predictor variables were available. These

results are reported in Table 11.
t

YNSERT TABLE 11 ABOUT HERE.

When stepwise regression analyses were performed to select

predictors of the deviations from population estimates for the

parameters noted in Table 11, the number of subjects per variable

("NCon") was selected as the best predictor in all nine analyses.

From among the remaining 21 predictors, the squared value of

"NCon" ("NCon**2") was selected as the next best predictor in

seven of the nine analyses, and as third best in two analyses.

Table 12 reports regression results when "NCon" ,nd "NCon**2"

w're entered first in the analyses. The table also reports the

partial correlation coefficients between the remaining 20

predictor variables and the deviations in estimates from known

population parameters, once the variance associated with the

number of subjects per variable was remove3.

INSERT TABLE 12 ABOUT HERE.

The results presented in Tables 11 and 12 clearly indicate

that the best predictor of deviations from true population values

of Rc induced by sampling error is the ratio of the number of

subjects to the number of variables. This information provides an

empirical basis for isolating a correction formula for Rc.

Another basis for identifying a correction is theoretical.

Like all parametrii, univariate and multivariate statistics

(Knapp, 1978), the multiple correlation coefficient (R) is a

14

:1.7



special case of Rc (Thompson, in press; Thompson & Borrello,

1985). Correction formulae to be applied to R have long been

available to researchers (e.g., 6klin & Pratt, 1958) and are well

known. For example, the researcher using the REGRESSION procedure

of SPSS-X always receives an "adjusted R" calculated using a

correction suggested by Wherry (1931). Carter (1979) notes that

the various corrections for R tend to yield very similar results,

especially when sample s5zes are greater than 50. The Wherry

correction can be expressed as:

1 ((NTot-1) / (NTot-VTot-1)) * (1 squared R)

or, equivalently, as:

squared R ((1- squared R) * (NTot / (Ntot-VTot-1))).

The empirical findings repotted in Tables 11 and 12 suggest

that the ratio of the number of subjects to the number of

variables in a study is the best predictor of sampling error in

Rc. The Wherry correction is largely a function of exactly this

ratio. Thus, both theoretical considerations and the empirical

results in the present study suggest that the Wherry correction

is appropriate for use with Rc, as tentatively speculated by

Cliff (1987, p. 446).

The results presented in Tables 7 through 10 indicate that

the sampling error in Rc gets disproportionately larger for each

proportional decrease in the ratio of sample size to the number

of variables. This conclusion is also supported by the finding

that the squared ratio of subjects to variables ("NCon**2") is

generally the next best predictor of bias, as indicated by the

results reported Tables 11 and 12 and by the stepwise regression

findings. The results also indicate that sampling error gets

15
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disproportionately larger for each proportional decrease in the

size of the true population Rc. For example, as noted in Table 8,
4

when the known population value is 0.82, the mean deviation from

the true value is extremely small (a mean overestimate of 0.052)

even when 12 variables are involved in the study and there are as

few as three subjects per variable.

Table 13 illustrates the application of the Wherry

correction to various values of squared Rc in various research

situations. Table 13 illustrates that the correction is very

small when Rc is very large, pretty much regardless of the ratio

of subjects to variables. For a given sample size (e.g., n=18),

the proportional amount of correction going from smaller to

larger values of squared Rc (e.g., 0.1 to 0.3; change = 491%

versus change = 127%) is smaller and smaller as Rc gets larger

(e.g., 0.5 to 0.7; change = 54% versus change = 23%). When

subjects are added in a given research situation, the effects of

adding the first 10 subjects, for example, will be greater than

the effects of adding the next 10 subjects. The results of the

present study suggest that these are the desirable properties for

corrections applied to Rc.

INSERT TABLE 13 ABOUT HERE.

Discussion

The results of the present study suggest three general

conclusions regarding an important multivariate analytic method,

a method that subsumes all other parametric significance tests as

special cases (Knapp, 1978). First, the results indicate that the
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canonical correlation coefficient (Rc) is somewhat positively

biased, i.e., sample results tend to yield overestimates of true

population values.

This result =.s not surprising from a theoretical point of

view. As Cliff (1987, p. 446) notes:

In multiple regression we learned that R can be a .

substantial overestimate of P [the true population

R] if the number of predictors is an appreciable

fraction of the number of observations. In rancor we

not only have the correlation between a variable and

the [latent] composite for which the weights were

optimally chosen, but the correlation between two

optimally weighted composites. We would therefore

expect that r* [Rc] is correspondingly likely to be

even more of an overestimate...

However, the results in the present study suggest that Rc is

not "correspondingly likely to be even more of an overestimate."

The bias in squared Rc is minimal, unless the researcher uses a

ratio of subjects to variables as small as three to one. Even

with such a ludicrous subject to variable ratio, the bias is

fairly minimal if true population values range as high as 0.40,

as in Table 9, or 0.45, as in Table 10. Bias is almost

nonexistant even with a very sma). sample size (e.g., 36, 24, 18,

or 36), if the true population squared Rc is is large as 0.82, as

in Table 8.

There have been a few previous Monte Carlo studies that

examined the bias in Rc as at least peripheral features of the



authors' purposes. For example, in a study focusing on the

properties of canonical function and structure coefficients,

Barcikowski and Stevens (197k) studied eight correlation

matrices, drawing 100 samples for each situation under

investigation. The number of variables ranged from seven to 41.

The authors concluded that "for all eight examples the canonical

correlations are very stable under replication...

sample sizes, such as 100 or 200".

In a similar vein, Dawson-Saunders (1982) conducted a Monte

Carlo study focusing on correction for bias in Rd. The researcher

drew 600 samples for each of 48 research situations. When the

ratio of sample size to variables was five, the researcher found

that the mean bias in the squared Rc for the first canonical

function was 0.127 across various types of matrices.

But Dawson-Saunders (1982, pp. 141-142) concluded that, with

even for small

respect to both Rc and Rd

bias decreases are inversely proportional to the

sample size. The investigator may be less concerned

with the number of variables in a study, except as

this number relates to sample size, and with the

degree of relationship among the variables in each

individual battery.

This conclusion appears to be in error. It is exactly the ratio

of number of subjects to variables that provides the best .

estimate of bias in estimates. The ratio is a better predictor of

bias than either sample size alone ("NTot") or the interbattery

correlations ("r2terAV"), as indicated by Tables 11 and 32.

These results suggest that researchers should attempt to
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employ 'at least 10 subjects per variable in multivariate studies.

But even when fewer subjects are employed, results may still be

interpretable if large effect sizes are detected. Researchers cali

be more certain of realizing such effects by solidly grounding

studies in both theory and related previous empirical inquiry.

Thus, the present study offers important guidance to researchers

trying to determine which study features may have contributed to

bias in their estimates of multivariate effects.

Second, the results reported in Tables 7 through 10 do

suggest that Rd is less biased than Rc, as suggested by Cooley

and Lohnes (1976, p. 212), at least when the pooled or omnibus Rd

is the basis for comparison. However, this result is not

surprising. As noted previously, canonical function coefficients

are selected to optimize Rc, i.e., to yield the largest possible

Rc for a given data set. Since maximizing Rd is not considered at

all as part of the analysis, no wonder the pooled redundancy

coefficient tends to be less biased than Rc!

Even though Rd tends to be somewhat less positively biased,

canonical analysis dons not optimize redundancy (Thompson, 1984,

p. 27), and redundancy coefficients are not true multivariate

statistics (Cramer & Nicewander, 1979, p. 43; Thompson, 1987).

Thus, redundancy coefficients are usually not useful in canonical

analysis, except in rare cases where the researcher expects to

isolate "g"-functions (e.g., Sexton et al., 1988). In these rare

cases, the researcher can take some comfnzt in knowing that

neither canonical correlation coefficients (Rc) nor redundancy

coefficients (Rd) tend to be very biased, especially when sample
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size is at least modest.

Third, the results presented in Tables 11 and 12 clearly

indicate that the best predictor of bias in Rc is the ratio of

the number of subjects to the number of variables. As these

analyses were based on 64,000 canonical analyses of sample data,

some confidence may be vested in this conclusion. Thus, the study

provides an empirical basis for Cliff's (1987, p. 446)

speculation that the Wherry correction, developed for use with

the multiple correlation coefficient (R), may be appropriate for

use with the canonical correlation coefficient (Rc).

The Wherry (1931) correction appears to be more appropriate

than alternative corrections, e.g., the Olkin-Pratt correction.

The Wherry correction has the advantage of being computationally

simple, and yet results in corrections comparable to those

provided by other formulae (Carter, 1979). The Olkin-Pratt

- correction will yield adjusted Rc's that are slightly higher than

Rc's adjusted using the Wherry formula, and the Table 13 results

do suggest that the Wherry correction is overly conservative. But

the differences in the two corrections tend to be very small.

The Wherry correction appears to be too conservative,

especially when sample size is small, or when Rc is small. This

suggests that the correction should be used by the researcher to

identify bounds within which the the true population Rc should

lie. The researcher can be reasonably certain the true population

values will lie between the adjusted Rc and the calculated Rc for

a given canonical function. If both the adjusted and the non-

adjusted canonical correlation coefficients involve effect sizes

that the researcher considers noteworthy, then the researcher can
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be comfortable in asserting a judgment that the function is

worthy of interpretation.
A

Even when the non-adjusted Rc is deemed noteworthy but the

adjusted Rc is not, the correction has value in alerting the

researcher that it may be particularly important to implement

further analyses to determine which of the two estimates of Rc

are most appropriate, so as to resolve the analytic ambiguity.

The three relevant logics for making this determination are

cross-validation (Thompson, 1984, pp. 41-47), the jackknife

method (e.g., Crask & Perreault, 1977), or the bootstrap method

(Diaconis & Efron, 1983).

Kerlinger (1973, p. 652) has suggested that "some research

problems almost demand canonical [correlation] analysis."

Similarly, Cooley and Lohnes (1971, p. 176) suggest that "it is

the simplest model that can begin to do justice to this difficult

problem of scientific generalization." The results in the present

study suggest that researchers can determine whether their sample

sizes will be adequate largely by consulting the ratio of the

number of subjects to the number of variables. The results also

provide empirical support for a recent speculation that Wherry's

correction for the multiple correlation coefficient might be

appropriately applied to the canonical correlation coefficient.

Finally, the results indicate that positive bias in Rc is not as

great as some researchers have supposed (e.g., Cooley & Lohnes,

1976, p. 212; Cliff, 1987, 446). Thus, canonical correlation

analysis remains a potent weapon in the analytic arsenal of the

behavioral scientist.
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Table 1
"Testwise" and "Experimentwise" Error Rates for Selected Studies

"Testwise"
Rate Minimum

"Experimentwise" Rate
1 n of Tests Maximum

05.0% 05.0% 1 ( 05.0%) ** 1 =
05.0% 05.0% 1 ( 95.0%) ** 1 =
05.0% 05.0% 1 - 95.0% = 05.00%

05.0% 05.0% 1 ( - 05.0%) ** 5 = 22.62%
05.0% 05.0% 1 ( 05.0%) ** 10 = 40.13%
05.0% 05.0% 1 ( 05.0%) ** 20 = 64.151,

Note. An alpha of 0.05 equals an alpha of 05.0%. "**" means
"raised to the power of". The first several rows of the table
illustrate the that "testwise" and "esTerimentwise" error rates
are the same when only one test is conducted.

Table 2
Hypothetical Observed and Latent Scores

XYAB ZX ZY ZA ZB Cl C2 P1 P2
1 11 5 1 -1.525 1.248 -.416 .957 .303 -1.934 -.182 -.995
2 5 3 1 -1.248 -.416 -.971 .957 -.998 -.866 -.733 -1.076
3 2 2 1 -.971 -1.248 -1.248 .957 -1.578 -.212 -1.009 -1.117
4 8 8 0 -.693 .416 .416 -.957 .006 -.804 .182 .995
5 4 4 0 -.416 -.693 -.693 -.957 -.814 -.012 -.921 .832
6 12 10 1 -.139 1.525 .971 .957 1.251 -.880 1.197 -.791
7 7 6 1 .139 .139 -.139 .957 .191 .050 ,094 -.954
8 1 1 0 .416 -1.525 -1.525 -.957 -1.110 1.118 -1.748 .710
9 9 12 0 .693 .693 1.525 -.957 .955 .250 1.284 1.157

10 3 7 0 .971 -.971 .139 -.957 -.346 1.319 -.094 .954
11 6 9 0 1.248 -.139 .693 -.957 .517 1.142 .457 1.035
12 10 11 1 1.525 .971 1.248 .957 1.621 .827 1.472 -.750

Note. Variables "X", "Y", "A", and "B", and their Z-score
equivalents are "observed" scores. The remaining scores are
"latent" or "synthetic" scores since they are created by adding
together the observed scores once they have been weighted by
coefficients analogous to beta weights, i.e., the canonical
function coefficients.



Table 3
Canonical Results for Hypothetical Data

Variable/
Coefficient

Function I Coefficients
Func Str Sq S Index

Function II Coefficients
Func Str Sq S Index

2

h
X .511 .499 24.87% .470 .860 .867 75.13% .460 1.000
Y .867 .860 73.91% .809 -.499 -.511 26.09% -.271 1.000
Adequacy 49.39% 50.61%
Redundancy 43.78% 14.24%
2

Rc 88.63% 28.13%

Redundancy 42.69% 14.58%
Adequacy 48.17% 51.83%
A .994 .971 94.20% .914 .147 .241 5.80% .128 1.000
B .242 .146 2.13% .138 -.975 -.989 97.87% -.525 1.000

Variable

Cl

- C2

X

Y

A

B

X

Y

A

B

Table 4
Bivariate Equivalents of Canonical Coefficients

Type

Latent

Latent

Observed

Observed

Observed

Observed

Observed

Observed

Observed

Observed

Variable

P1

P2

Cl

Cl

P1

P1

P1

P1

Cl

Cl

Type

Latent

Latent

Latent

Latent

Latent

Latent

Latent

Latent

Latent

Latent
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Result

Function I Rc

Function II Rc

Structure Coef.
for X on Function I
Structure Coef.
for Y on Function I
Structure Coef.
for A on Function I
Structure Coef.
for B on Function I
Index Coef.
for X on Function I
Index Coef.
for Y on Function I
Index Coef.
for A on Function I
Index Coef.
for B on Function I



Table 5
Actual Population Correlation Coefficients for

Matrix #1 !Above Diagonal) and Matrix

I

#2 (Below Diagonal)

i 2 3 4 5 6 7 8 -9 10 11 12
1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
6 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
7 .00 .00 .00 .00 .00 .10 .00 .00 .00 .00 .00
8 .00 .00 .00 .00 .10 .00 .00 .00 .00 .00 .00
9 .00 .00 .00 .10 .00 .00 .00 .00 .00 .00 .00

10 .00 .00 .10 .00 .00 .00 .00 .00 .00 .00 .00
11 .31 .60 .00 .00 .00 .00 .00 .00 .00 .00 .00
12 .61 .30 .00 .00 .00 .00 .00 .00 .00 .00 .00

Note. Variable combination "A" consisted of 12 variables [set 1 =
variables 1-6; set 2 = variables 7-121; variable combination "B"
consisted of 8 variables [set 1 = variables 1-4; set 2 =
variables 9-121; variable combination "C" consisted of 6
variables [set 1 = variables 1-4; set 2 = variables 11-12];
variable combination "D" consisted on 12 variables [set 1 =
variables 1-10; set 2 = variables 11-121.

Table 6
Actual Population Correlation Coefficients for

Matrix #3 (Above Diagonal) and Matrix #4

1 2 3 4 5 6 7 8
1 .58 .29 .10 .10 .10 .10 .10
2 .24 .30 .10 .10 .10 .10 .10
3 .24 .25 .10 .10 .10 .10 .10
4 .25 .25 .25 .10 .10 .10 .10
5 .25 .26 .26 .25 .10 .10 .10
6 .24 .25 .25 .25 .25 .10 .10
7 .25 .26 .25 .25 .25 .25 .10
8 .25 .25 .26 .26 .26 .25 .26
9 .25 .25 .25 .25 .25 .25 .25 .25
10 .25 .26 .26 .26 .26 .26 .26 .26
11 .25 .25 .25 .25 .25 .25 .25 .25
12 .25 .26 .25 .25 .25 .25 .25 .25

Note. Variable combination "A" consisted of

(Below Diagonal)

9 10 11 12
.10 .10 .30 .60
.10 .10 .30 .29
.10 .10 .10 .09
.10 .10 .10 .10
.10 .10 .10 .10
.10 .10 .10 .10
.10 .10 .10 .10
.10 .10 .10 .10

.10 .10 .10
.26 .30 .30
.25 .26 .60
.25 .26 .25

12 variables [set 1 =
variables 1-6; set 2 = variables 7-12]; variable combination "B"
consisted of 8 variables [set 1 = variables 1-4; set 2 =
variables 9-12]; variable combination "C" consisted of 6
variables [set 1 = variables 1-4; set 2 = variables 11 -12];
variable combination "D" consisted on 12 variables [set 1 =
variables 1-10; set 2 = variables 11-121.



Table 7
Deviations from Known Population Coefficients Across 16

Research Situations Associated with Population Matrix #1

Matrix/
NCon I II

Function RcgQs
III IV V VI Lambda

Redundancy
Pred Crit

lA .00 .00 .00 .00 .00 .00 1.00 .00 .00
3 -.447 -.289 -.173 -.085 -.030 -.004 .707 -.171 -.170

(.091) (.075) (.055) (.037) (.021) (.007) (.084) (.036) (.036)
10 -.137 -.082 -.045 -.022 -.007 -.001 .265 -.049 -.049

(.036) (.023) (.016) f.010) (.005) (.001) (.053) (.011),(.011)
25 -.054 -.031 -.017 -.008 -.003 .000 .109 -.019 -.019

(.014) (.009) (.006) (.004) (.002) (.001) (.024) (.004) (.004)
40 -.033 -.019 -.010 -.005 -.002 .000 .067 -.011 -.011

(.009) (.005) (.004) (.002) (.001) (.000) (.015) (.003) (.003)
1B .00 .09 .00 .00 1.00 .00

3 -.415 -.203 -.072 -.010 .566 -.176 -.175
(.122) (.084) (.049) (.014) (.126) (.055) (.053)

10 -.125 -.056 -.019 -.003 .191 -.050 -.050
(.043) (.027) (.013) (.004) (.058) (.017) (.017)

25 -.050 -.021 -.007 -.001 .078 -.020 -.020
(.019) (.010) (.005) (.001) (.026) (.007) (.007)

40 -.030 -.013 -.004 -.001 .047 -.012 -.012
(.011) (.006) (.003) (.001) (.016) (.004) (.004)

1C .00 .00 1.00 .00 .00
3 -.362 -.109 .429 -.118 -.236

(.142) (.080) (.149) (.052) (.059)
10 -.103 -.028 .128 -.033 -.066

(.051) (.022) (.059) (.016) (.031)
25 -.041 -.011 .051 -.013 -.026

(.021) (.008) (.024) (.006) (.012)
40 -.025 -.006 .031 -.008 -.016

(.013) (.005) (.015) (.004) (.008)
1D .00 .00 1.00 .00 .00

3 -.376 -.188 .491 -.056 -.281
(.096) (.073) (.103) (.016) (.071)

10 -.114 -.053 .161 -.017 -.084
(.037) (.024) (.048) (.005) (.026)

25 -.044 -.020 .063 -.006 -.032
(.016) (.009) (.020) (.002) (.010)

40 -.027 -.012 .038 -.004 -.019
(.009) (.005) (.012) (.001) (.006)

Note. Known population parameters are reported to exactly two
decimal places. Mean deviations from true population parameters
across 1,000 random samples for each of the 16 research
situations are reported to three decimal places and not in
parentheses. Standard deviations for sample values are reported
to three decimal places in parentheses.



Table 8
Deviations from Known Population Coefficients Across 16
Research Situations Associated with Population Matrix #2

Matrix/
NCon I II

Function Rcks
III IV V VI Lambda

Redundancy
Pred Crit

2A .82 ,09 .01 .01 .01 .01 .16 .16 .16
3 -.049 -.321 -.229 -.110 -.032 .003 .108 -.138 -.140

(.050) (.096) (.076) (.054) (.029) (.010) (.024) (.040) (.041)
10 -.016 -.087 -.078 -.031 -.005 .007 .041 -.040 -.040

(.029) (.050) (.029) (.018) (.010) (.003) (.023) (.019),(.018)
25 -.005 .031 -.037 -.013 .001 .008 .016 -.015 -.015

(.019) (.031) (.015) k.010) (.006) (.002) (.017) (.011) (.011)
40 -.003 -.019 -.027 -.009 .001 .007 .010 -.009 -.009

(.014) (.025) (.011) (.007) (.004) (.002) (.013) (.008) (.008)
2B .82 .09 .01 .01 .16 .23 .23

3 -.045 -.245 -.111 -.008 .082 -.121 -.123
(.061) (.125) (.075) (.025) (.042) (.063) (.063)

10 -.011 -.069 -.037 .004 .026 -.034 -.036
(.036) (.063) (.028) (.009) (.031) (.031) (.032)

25 -.005 -.024 -.019 .005 .011 -.013 -.013
(.023) (.038) (.017) (.006) (.021) (.019) (.019)

40 -.002 -.017 -.014 .005 .007 -.008 -.010
(.018) (.029) (.013) (.006) (.016) (.014) (.014)

2C .82 .09 .16 .23 .46
3 -.039 -.161 .058 -.077 -.105

(.072) (.151) (.060) (.070) (.113)
10 -.009 -.039 .015 -.021 -.027

(.043) (.074) (.040) (.034) (.063)
- 25 -.003 -.018 .005 -.008 -.011

(.027) (.046) (.026) (.022) (.041)
40 -.003 -.012 .005 -.006 -.009

(.021) (.036) (.020) (.016) (.032)
2D .82 .09 .16 .09 .46

3 -.052 -.233 .077 -.048 -.148
(.047) (.109) (.036) (.023) (.077)

10 -.014 -.067 .024 -.014 -.042
(.029) (.054) (.026) (.010) (.044)

25 -.005 -.025 .009 -.005 -.016
(.019) (.032) (.018) (.006) (.028)

40 -.003 -.017 .006 -.003 -.011
(.015) (.025) (.014) (.005) (.022)

384



Table 9
Deviations from Known Population Coefficients Across 16
Research Situations Associated with Population Matrix #3

Matrix/ Function Rcks Redundancy
NCon I II III IV V VI Lambda Pred Crit

3A .40 .11 .03 .00
3 -.210 -.274 -.200 -.115

(.091) (.088) (.071) (.049)
10 -.060 -.074 -.059 -.038

(.063) (.056) (.030) (.018)
25 -.020 -.026 -.022 -.018

(.042) (.034) (.018) (.009)
40 -.015 -.016 -.012 -.012

(.032) (.025) .014) (.006)
3B .40 .07 .02 .00

3 -.211 -.222 -.088 -.016
(.121) (.112) (.066) (.021)

10 -.055 -.064 -.026 -.006
(.082) (.057) (.028) (.008)

25 -.024 -.025 -.011 -.003
(.051) (.034) (.016) (.004)

40 -.014 -.017 -.007 -.002
(.040) (.027) (.013) (.003)

3C .39 .06
3 -.180 -.136

(.143) (.127)
10 -.053 -.043

(.094) (.063)
25 -.016 -.017

(.061) (.038)
40 -.011 -.013

(.047) (.030)
3D .44 .09

3 -.179 -.214
(.100) (.107)

10 -.049 -.066
(.064) (.055)

25 -.022 -.026
(.040) (.034)

40 -.013 -.016
(.031) (.024)

35

32

.00 .00 .52 .11 .11
-.040 -.006 .358 -.147 -.146
(.026) (.008) (.061) (.047) (.049)
-.013 -.002 .137 -.044 -.043
(.009) (.003) (.057) .024),(.025)
-.006 -.001 .055 .1116 -.016
(.004) (.001) (.040) (.015) (.014)
-.003 .000 .036 -.011 -.011
(.002) (.001) (.031) (.011) (.011)

.55 .13 .14
.303 -.144 -.144

(.103) (.073) (.071)
.099 -.041 -.041

(.078) (.039) (.039)
.044 -.016 -.017
(.051) (.023) (.024)
.028 -.011 -.012

(.039) (.018) (.018)
.57 .12 .25

.224 -.094 -.158
(.141) (.079) (.131)
.074 -.028 -.050

(.095) (.043) (.076)
.025 -.009 -.016

(.061) (.026) (.046)
.018 -.007 -.013

(.047) (.020) (.036)
.51 .07 .31

.242 -.051 -.185
(.088) (.032) (.095)
.078 -.015 -.055
(.063) (.016) (.057)
.034 -.007 -.025

(.039) (.009) (.033)
.021 -.004 -.015

(.031) (.007) (.026)



Table 10
Deviations from Known Population Coefficients Across 16

Research Situations Associated with Population Matrix #4

Matrix/
NCon I II

Function RcgQs
III IV V VI Lambfa

Redundancy
Pred Crit

4A .45 .00 .00 .00 .00 .00 .55 .17 .17
3 -.176 -.353 -.202 -.098 -.035 -.005 .379 -.133 -.132

(.096) (.088) (.063) (.042) (.024) (.007) (.060) (.060) (.060)
10 -.050 -.108 -.057 -.026 -.009 -.001 .144 -.041 -.040

(.065) (.034) (.020) (.012) (.006) (.002) (.057) (.035).(.033)
25 -.018 -.044 -.022 -.010 -.004 -.001 .059 -.015 -.015

(.040) (.014) (.008) (.005) (.002) (.001) (.038) (.021) (.021)
40 -.012 -.026 -.013 -.006 -.002 .000 .037 -.010 -.010

(.032) (.008) (.005) (.003) (.001) (.000) (.031) .017) (.016)
4B .33 .00 .00 .00 .67 .14 .15

3 -.223 -.254 -.090 -.011 .364 -.142 -.140
(.122) (.096) (.058) (.017) (.107) (.079) (.080)

10 -.057 -.079 -.026 -.004 .121 -.041 -.040
(.081) (.037) (.018) (.006) (.077) (.044) (.043)

25 -.021 -.033 -.010 -.001 .049 -.016 -.016
(.053) (.016) (.006) (.002) (.052) (.029) (.r28)

40 -.013 -.020 -.006 -.001 .030 -.010 -.009
(.043) (.010) (.004) (.001) (.043) (.023) (.023)

4C .23 .00 .76 .10 .15
3 -.234 -.141 .304 -.095 -.183

(.152) (.104) (.155) (.084) (.121)
10 -.061 -.048 .094 -.028 -.053

(.091) (.036) (.092) (.046) (.063)
25 -.025 -.019 .039 -.011 -.022

(.062) (.016) (.062) (.031) (.042)
40 -.019 -.012 .028 -.009 -.016

(.046) (.009) (.046) (.023) (.031)
4D .31 .00 .69 .10 .20

3 -.216 -.240 .328 -.045 -.217
(.105) (.090) (.097; 048) (.084)

10 -.061 -.073 .106 .01. -.064
(.068) (.033) (.067) (.028) :.050)

25 -.023 -.029 .042 -.005 -.024
(.041) (.013) (.041) (.016) (.029)

40 -.015 -.017 .027 -.004 -.016
(.033) (.008) (.033) (.013) (.023)



Table 11
Variations in 64 Research Situations Associated

(Pearson r) with Deviations from True Population Values

Research Deviations from True Values
Variations 2 2 2 2 2 2

Rc 1 Rc 2 Rc 3 Rc SE1 Rc SE2 Rc SE3 Lambda RdPR RdCR
NCon .615 .746 .699 -.720 -.772 -.785 -.635 .707 .755
NTot .556 .653 .628 -.708 -.723 -.739 -.560 .648 .680
NCon**2# .515 .624 .586 -.631 -.662 -.662 -.537 .591 .631
NTot**2# .425 .502 .493 -.574 -.569 -.583 -.433 .497 .521
r2terSD .357 .031 -.059 -.126 .384 .240 -.384 .089 .145
r2terSD2# .339 .054 -.018 -.141 .374 .211 -.371 .099 .144
r2terAV .328 .017 .019 .172 .292 .089 -.318 .123 .137
r2terAV2# .253 .062 .061 .108 .273 .027 -.260 .110 .119
r2CtraAV .052 .048 .081 .288 .132 .026 -.074 .097 -.007
r2CtraAV2# .048 .064 .115 .209 .140 .030 -.083 .107 -.013
r2PtraSD .040 .037 .044 .267 .172 .124 -.045 -.025 .035
r2PtraAV .038 -.013 .078 .441 .048 .026 -.006 -.010 .029
r2PtraAV2# .035 .011 .111 .413 .075 .030 -.019 -.018 .031
r2PtraSD2# .033 .047 .069 .270 .168 .115 -.043 -.039 .038
V2 -.029 -.210 .330 -.126 -.071 .039 .154 -.263 .108
V2**2# -.027 -.211 .330 -.135 -.076 .039 .153 -.246 .100
VTot -.011 -.189 - .330 -.251 -.121 .039 .092 .044 -.040
VTot**2# -.010 -.183 .330 -.248 -.119 .039 .088 .055 -.044
V1**2# .009 -.039 .330 -.165 -.071 .039 -.021 .241 -.122
r2CtraSD .008 -.028 .045 .129 .083 .124 .020 -.108 .048
V1 .007 -.059 - .330 -.181 -.080 .039 -.007 .225 -.115
r2CtraSD2# .007 -.019 .070 .133 .087 .115 .013 -.100 .044

- Note. Variables designated with "#" are squared values of the 11
predictor variables, used to detect curvilinear relationships of
predictors with the dependent variables named in the column headings.

37
34



Table 12
Predicting Deviations from True Population Values

B- 2 2 2 42 2 2
Weights Rc 1 Rc 2 Rc 3 Rc SE1 Rc SE2 Rc SE3 Lambda RdPR RdCR

NCon .0166 .0174 .0111 -.0053 -.0064 -.0046 -.0233 .0086 .0130
NCon**2 .0001 -.0003 -.0002 0001 .0001 .0001 .0004 -.0001 -.0002
CONSTANT -.2389 -.2507 -.1626 .1110 .1113 .0713 .3519 -.1230 -.1878

beta Weights

NCon 2.271 2.742 2.557 -2.096 -2.532 -2.805 -2.229 2.609 2.786
NCon**2 -1.698 -2.048 -1.906 1.412 1.806 2.072 1.635 -1.952 -2.084

RSQ 52.30% 76.59% 67.10% 61.82% 75.92% 83.18% 53.71% 69.05% 78.72%

Partial Bivariate r's

r2terSD .5174 .0637 -.1026 -.2046 .7817 .5841 -.5648 .1602 .3150
r2terSD2 .4905 .1126 -.0317 -.2286 .7613 .5153 -.5456 .1782 .3119
r2terAV .4746 .0359 .0339 .2779 .5946 .2175 -.4672 .2204 .2979
r2terAV2 .3666 .1274 .1070 .1756 .5565 .0666 -.3818 .1974 .2585
r2CtraAV .0754 .0993 .1406 .4657 .2699 .0630 -.1087 .1751 -.0144
r2CtraAV2 .0690 .1324 .2003 .3384 .2858 .0731 -.1222 .1928 -.0288
r2PtraSD .0577 .0765 .0773 .4329 .3497 .3029 -.0659 -.0455 .0767
r2PtraAV .0557 -.0274 .1362 .7138 .0980 .064'1 -.0090 -.0175 .0625
r2PtraAV2 .0501 .0233 .1940 .6688 .1534 .0744 -.0281 -.0316 .0665
r2PtraSD2 .0479 .0968 .1208 .4370 .3427 .2816 -.0632 -.0698 .0821
V2 -.0415 -.4339 -.5754 -.2040 -.1446 .0952 .2260 -.4731 .2350
V2**2 -.0387 -.4354 -.5754 -.2186 -.1543 0952 .2253 -.4417 .2177
VTot -.0166 -.3915 -.5754 -.4059 -.2457 .0952 .1347 .0792 -.0857
VTot**2 -.0144 -.3785 -.5754 -.4016 -.2434 .0952 .1290 .0980 -.0947
V1**2 .0131 -.0809 -.5754 -.2669 -.1451 .0952 -.0303 .4332 -.2635
r2CtraSD .0115 -.058E .0791 .2082 .1694 .3026 .0300 -.1932 .1034
V1 .0104 -.1214 -.5754 -.2925 -.1627 .0952 -.0101 .4043 -.2500
r2CtraSD2 .0104 -.0401 .1221 .2154 .1769 .2808 .0189 -.1800 .0963
NTot -.0079 -.1179 -.1872 -.2097 -.1094 .0334 .0563 .0269 -.0248
NTot**2 -.0042 -.0561 -.1005 -.1469 -.0747 .0169 .0323 .0199 -.0115

Note. The partial correlation coefficients are the correlations
coefficients between the predictors and the dependent variables
(deviations from true population values for the first three squared
Rc's, the standard deviations of the deviations, and deviations from
true values for lambda, and for Rd for both variable sets), after
variance in the dependent variables associated with number of subjects
per variable ("NCon") and the squared value for NCon ("NCon**2") was
residualized.
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Table 13
Wherry Corrections of Rc Under Various Conditions

Rcsq v NCon n 'Rsq* Change %Change
A 12 10 120 .889 .0112 1.25%
.9 8 10 80 .889 .011:2. 1.25%
.9 6 10 60 .889 .0113 1.26%
.9 12 3 36 .848 .0522 5.80%
.9 8 3 24 .847 .0533 5.93%
.9 6 3 18 .845 .0545 6.06%
.7 12 10 120 .666 .0336 4.81%
.7 8 10 80 .666 .0338 4.83%
.7 6 10 60 .666 .0340 4.85%
.7 12 3 36 .543 .1565 22.36%
.7 8 3 24 .540 .1600 22.86%
.7 6 3 18 .536 .1636 23.38%
.5 12 10 120 .444 .0561 11.21%
.5 8 10 80 .444 .0563 11.27%
.5 6 10 60 .443 .0566 11.32%
.5 12 3 36 .239 .2609 52.17%
.5 8 3 24 .233 .2667 53.33%
.5 6 3 18 .227 .2727 54.55%
.3 12 10 120 .221 .0785 26.17%
.3 8 10 80 .221 .0789 26.29%
.3 6 10 60 .221 .0792 26.42%
.3 12 3 36 -.065 .3652 121.74%
.3 8 3 24 -.073 .3733 124.44%
.3 6 3 18 -.082 .3818 127.27%
.1 12 10 120 -.001 .1009 100.93%
.1 8 10 80 -.001 .1014 101.41%
.1 6 10 60 -.002 .1019 101.89%
.1 12 3 36 -.370 .4696 469.57%
.1 8 3 24 -.380 .4800 480.00%
.1 6 3 18 -.391 .4909 490.91%

Note. "Rsq*" is the canonical correlation adjusted using the
Wherry correction. Negative values are treated as zero.
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APPENDIX A:
Scattergram of Canonical* Composite Scores on Function I
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Note. The numbers plotted within the scattergram are the subject
ID codes also constituting variable "X" in Table 2. For example,
on Function I subject #1 had a canonical criterion composite
score of .303 and a canonical predictor composite score of -.182.
The slope of the bivariate regression line is Rc (6.9414).
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APPENDIX B:
Raw Predictor Variable Data Which,

Together with Criterion Variable Data Presented in Tables 7-10,
Yield the Results in Tables 11 and 12

4

MAT NCon V1
r2terAV r2PtraAV r2CtraAV

V2 VTot NTot r2terSD r2PtraSD r2CtraSD
1A 3 6 6 12 36 .000 .000 .000 .000 .000 .000
1A 10 6 6 12 120 .000 .000 .000 .000 .000 .000
1A 25 6 6 12 300 .000 .000 .000 .000 .000 .000
1A 40 6 6 12 480 .000 .000 .000 .000 .000 .000
1B 3 4 4 8 24 .000 .000 .000 .000 .000 , .000
1B 10 4 4 8 80 .000 .000 .000 .000 .000 .000
1B 25 4 4 8 200 .000 .000 .000 .000 .000 .000
1B 40 4 4 8 320 .000 .000 .000 .000 .000 .000
1C 3 4 2 6 18 .000 .000 .000 .000 .000 .000
1C 10 4 2 6 60 .000 .000 .000 .000 .000 .000
1C 25 4 2 6 150 .000 .000 .000 .000 .000 .000
1C 40 4 2 6 240 .000 .000 .000 .000 .000 .000
1D 3 10 2 12 36 .000 .000 .000 .000 .000 .000
1D 10 10 2 12 120 .000 .000 .000 .000 .000 .000
1D 25 10 2 12 300 .000 .000 .000 .000 .000 .000
1D 40 10 2 12 480 .000 .000 .000 .000 .000 .000
2A 3 6 6 12 36 .027 .085 .000 .000 .000 .000
2A 10 6 6 12 120 .027 .085 .000 .000 .000 .000
2A 25 6 6 12 300 .027 .085 .000 .000 .000 .000
2A 40 6 6 12 480 .027 .085 .000 .000 .000 .000
2B 3 4 4 8 24 .059 .120 .000 .000 .000 .000
2B 10 4 4 8 80 .059 .120 .000 .000 .000 .000
2B 25 4 4 8 200 .059 .120 .000 .000 .000 .000
2B 40 4 4 8 320 .059 .120 .000 .000 .000 .000
2C 3 4 2 6 18 .115 .150 .000 .000 .000 .000
2C 10 4 2 6 60 .115 .150 .000 .000 .000 .000
2C 25 4 2 6 150 .13.5 .150 .000 .000 .000 .000
2C 40 4 2 6 240 .115 .150 .000 .000 .000 .000
2D 3 10 2 12 36 .046 .110 .001 .003 .000 .000
2D 10 10 2 12 120 .046 .110 .001 .003 .000 .000
2D 25 10 2 12 300 .046 .110 .001 .003 .000 .000
2D 40 10 2 12 480 .046 .110 .001 .003 .000 .000
3A 3 6 6 12 36 .026 .060 .042 .083 .044 .089
3A 10 6 6 12 120 .026 .060 .042 .083 .044 .089
3A 25 6 6 12 300 .026 .060 .042 .083 .044 .089
3A 40 6 6 12 480 .026 .060 .042 .083 .044 .089
3B 3 4 4 8 24 .046 .087 .090 .115 .095 .124
3B 10 4 4 8 80 .046 .087 .090 .115 .095 .124
3B 25 4 4 8 200 .046 .087 .090 .115 .095 .124
3B 40 4 4 8 320 .046 .087 .090 .115 .095 .124
3C 3 4 2 6 18 .083 .111 .090 .115 .360 .000
3C 10 4 2 6 60 .083 .111 .090 .115 .360 .000
3C 25 4 2 6 150 .083 .111 .090 .115 .360 .000
3C 40 4 2 6 240 .083 .111 .090 .115 .360 .000
3D 3 10 2 12 36 .047 .079 .021 .050 .360 .000
3D 10 10 2 12 120 .047 .079 .021 .050 .360 .000
3D 25 10 2 12 300 .047 .079 .021 .050 .360 .000
3D 40 10 2 12 480 .047 .079 .021 .050 .360 .000



MAT NCon V1
r2terAV r2PtraAV r2CtraAV

V2 VTot NTot r2terSD r2PtraSD r2CtraSD
4A 3 6 6 12 36 .064 .002 .062 .003 .065 .003
4A 10 6 6 12 120 .064, .002 .062 .003 .065 .003
4A 25 6 6 12 300 .064. .002 .062 .003 .065 .003
4A 40 6 6 12 480 .064 .002 .062 .003 .065 .003
4B 3 4 4 8 24 .064 .002 .061 .002 .065 .003
4B 10 4 4 8 80 .064 .002 .061 .002 .065 .003
4B 25 4 4 8 200 .064 .002 .061 .002 .065 .003
4B 40 4 4 8 320 .064 .002 .061 .002 .065 .003
4C 3 4 2 6 18 .063 .002 .061 .002 .063 .000
4C 10 4 2 6 60 .063 .002 .061 .002 .063 . .000
4C 25 4 2 6 150 .063 .002 .061 .002 .063 .000
4C 40 4 2 6 240 .063 .002 .061 .002 .063 .000
4D 3 10 2 12 36 .063 .003 .064 .003 .063 .000
4D 10 10 2 12 120 .063 .003 .064 .003 .063 .000
4D 25 10 2 12 300 .063 .003 .064 .003 .063 .000
4D 40 10 2 12 480 .063 .003 .064 .003 .063 .000
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APPENDIX C:
Plot of Squared Rc for Function I with "NCon"
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This plot illustrates that deviations tend to be relatively small
when the number of subjects per variable ("NCon") is at least,10,
and that some deviations are small even when "NCon" is as small
as three.
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